Excitotoxic damage to white matter.

نویسندگان

  • Carlos Matute
  • Elena Alberdi
  • María Domercq
  • María-Victoria Sánchez-Gómez
  • Alberto Pérez-Samartín
  • Alfredo Rodríguez-Antigüedad
  • Fernando Pérez-Cerdá
چکیده

Glutamate kills neurons by excitotoxicity, which is caused by sustained activation of glutamate receptors. In recent years, it has been shown that glutamate can also be toxic to white matter oligodendrocytes and to myelin by this mechanism. In particular, glutamate receptor-mediated injury to these cells can be triggered by activation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, kainate and N-methyl-D-aspartate glutamate receptor types. Thus, these receptor classes, and the intermediaries of the signal cascades they activate, are potential targets for drug development to treat white matter damage in acute and chronic diseases. In addition, alterations of glutamate homeostasis in white matter can determine glutamate injury to oligodendrocytes and myelin. Astrocytes are responsible for most glutamate uptake in synaptic and non-synaptic areas and consequently are the major regulators of glutamate homeostasis. Activated microglia in turn may secrete cytokines and generate radical oxygen species, which impair glutamate uptake and reduce the expression of glutamate transporters. Finally, oligodendrocytes also contribute to glutamate homeostasis. This review aims at summarizing the current knowledge about the mechanisms leading to oligodendrocyte cell death and demyelination as a consequence of alterations in glutamate signalling, and their clinical relevance to disease. In addition, we show evidence that oligodendrocytes can also be killed by ATP acting at P2X receptors. A thorough understanding of how oligodendrocytes and myelin are damaged by excitotoxicity will generate knowledge that can lead to improved therapeutic strategies to protect white matter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nociceptin/orphanin FQ exacerbates excitotoxic white-matter lesions in the murine neonatal brain.

Intracerebral administration of the excitotoxin ibotenate to newborn mice induces white-matter lesions, mimicking brain lesions that occur in human preterm infants. Nociceptin (NC), also called orphanin FQ, is the endogenous ligand of the opioid receptor-like 1 (ORL1) receptor and does not bind classical high-affinity opioid receptors. In the present study, administration of NC exacerbated ibot...

متن کامل

Increased expression of glutamate transporters in subcortical white matter after transient focal cerebral ischemia.

Transient focal cerebral ischemia leads to extensive excitotoxic glial damage in the subcortical white matter. Efficient reuptake of released glutamate is essential for preventing glutamate receptor overstimulation and neuronal and glial death. The present study evaluates the expression of the main glutamate transporters (EAAT1, EAAT2, and EAAT3) in subcortical white matter of the rat after tra...

متن کامل

Endocannabinoids potently protect the newborn brain against AMPA-kainate receptor-mediated excitotoxic damage.

Brain lesions induced in newborn mice or rats by the glutamatergic agonists ibotenate (acting on NMDA and metabotropic receptors) or S-bromowillardiine (acting on AMPA-kainate receptors) mimic some aspects of white matter cysts and transcortical necrosis observed in human perinatal brain damage associated with cerebral palsy. Exogenous and endogenous cannabinoids have received increasing attent...

متن کامل

Moderate growth restriction: deleterious and protective effects on white matter damage.

The role for growth restriction in the multifactorial pathophysiology of developing white-matter damage remains debated. We studied rat pups with prenatal growth restriction (GR) induced by unilateral ligation of the uterine artery. Pups with severe GR exhibited white-matter damage that persisted to adulthood [Olivier, P., Baud, O., Evrard, P., Gressens, P.,Verney, C., 2005. Prenatal ischemia a...

متن کامل

Neuroprotective Effect of Inhaled Nitric Oxide on Excitotoxic-Induced Brain Damage in Neonatal Rat

BACKGROUND Inhaled nitric oxide (iNO) is one of the most promising therapies used in neonates. However, little information is known about its impact on the developing brain submitted to excitotoxic challenge. METHODOLOGY/PRINCIPAL FINDINGS We investigated here the effect of iNO in a neonatal model of excitotoxic brain lesions. Rat pups and their dams were placed in a chamber containing 20 ppm...

متن کامل

Excitotoxicity in a chronic model of multiple sclerosis: Neuroprotective effects of cannabinoids through CB1 and CB2 receptor activation.

Inflammation, autoimmune response, demyelination and axonal damage are thought to participate in the pathogenesis of multiple sclerosis (MS). Understanding whether axonal damage causes or originates from demyelination is a crucial issue. Excitotoxic processes may be responsible for white matter and axonal damage. Experimental and clinical studies indicate that cannabinoids could prove efficient...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of anatomy

دوره 210 6  شماره 

صفحات  -

تاریخ انتشار 2007